skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Debray, Reena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As parasites of bacteria, phages can regulate microbiome diversity and composition and may therefore affect susceptibility to pathogens and disease. Many infectious diseases are associated with altered bacteriophage communities, but observational studies alone do not allow us to determine when altered phage community composition is a contributor to disease risk, a response to infection, or simply an indicator of dysbiosis. To address this question directly, we used size-selective filtration to deplete plant-associated microbial communities of phages, then challenged plants with the bacterial pathogen Pseudomonas syringae. Plants with phage-depleted microbiomes were more susceptible to infection, an effect that could not be explained by direct effects of the phage communities on either P. syringae or the plant host. Moreover, the presence of phages was most impactful when the phage communities were isolated from neighboring field locations rather than from the same host plant as the bacteria, possibly suggesting that moderate rates of lysis maintain a community structure that is most resistant to pathogen invasion. Overall, our results support the idea that phage communities contribute to plant defenses by modulating the microbiome. 
    more » « less
  2. Amaral, Luís_A Nunes (Ed.)
    Despite the importance of a diversity of backgrounds and perspectives in biological research, women, racial and ethnic minorities, and students from non-traditional academic backgrounds remain underrepresented in the composition of university faculty. Through a study on doctoral students at a research-intensive university, we pinpoint advising from faculty as a critical component of graduate student experiences and productivity. Graduate students from minority backgrounds reported lower levels of support from their advisors and research groups. However, working with an advisor from a similar demographic background substantially improved productivity and well-being of these students. Several other aspects of mentoring practices positively predicted student success and belonging, including frequent one-on-one meetings, empathetic and constructive feedback, and relationships with other peer or faculty mentors. Our study highlights the need to renovate graduate education with a focus on retention–not just recruitment–to best prepare students for success in scientific careers. 
    more » « less
  3. Hendrickson, Heather (Ed.)
    Abstract Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria–phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution. 
    more » « less